Damn Vulnerable AWS API

Garret Arp | Ashler Benda | Karthik Kasarabada | Andrew Bowen | Ahmed Nasereddin | Ayo Ogunsola | Ethan Douglass

Group #: sdmay24-11 Advisor: Dr. Julie Rursch Client: Jon Schnell on behalf of RSM
Introduction Design Approach

 Qur client provides cloud * Organization is based on a standard cyber attack flow
security testing as a * Chosen medium was Infrastructure as Code to maximize impact
consulting service to their through the resulting simplified setup and breakdown of the
customers environment

 We were tasked with creating * Two seperate attack paths to maximize educational content and
a learning tool for AWS minimize resource consumption
Pentesting that could also be * Model real world systems, misconfigurations, and attacks

used for skill assessment

New Student Registration Form Initial Entry
Design Requirements =
. Utilize AWS specific |

Looting 1

vulnerabilities and exploits _ x
« Result in full account “ 85 Bucket
compromise o’
« Use Cloudformation ¥ - @
Templates il

* Minimum cost by using free
tier resources

Privilege Escalation 2 Eaterol hgovement Looting 2

Systems Manager Hardcoded Credentials Relational Database Service Personally Identifiable Information

Student Advisor Workstation|Creation :k Student Database
Included AWS Services R :‘_ B hr—= ? CBucket
. API Gateway 3
- Relational Database Service R iore Eion Crestion
(RDS)
 Simple Storage Service (S3) Technical Details
« Elastic Compute Cloud (EC2) Attack Path 1
* Identity and Access - Initial access to a website that allows improperly scoped access to an
Management (IAM) S3 bucket that reveals an AWS Access Key
* Lambda Function - Access Key allows enumeration of resources to identify backend
* Virtual Private Cloud (VPC) database and improperly decommissioned System’s Manager
*+ Systems Manager (SSM) command document with credentials
* AWS CLI - Credentials allow interaction with EC2 instance that can be passed a
higher privilege role for full account compromise and looting of the
database
Attack Path 2:
Intended Users - Initial access to a Django web server which is leaking credential files

through the exposed AWS metadata service

- Using the exposed credentials, resource enumeration reveals an older
|AM policy version with poorly scoped permissions which users can
revert to in order to escalate their privileges

- Additional permissions allow creation of an unsecure EC2 instance

« New AWS users

* Risk Consultants

 |T Administrators

« Software Architects

« Cybersecurity Students

Testing
Use Cases All tests are performed in AWS environment provided by the client
* Unit Testing Each individual component as seen in final design
* Testing and Development iterations is tested to confirm the resources interact as intended
* Security * Integration Testing The developer of each component begins
* Education integration testing to confirm that privilege escalation or resource
» Skill Analysis communication works as intended with attached components
* Full System Testing All components in a given Attack Path are
consolidated into a full stack for testing by following through the
laC Visualization documented user walkthrough to validate all functional requirements
- 7{ . Resources (45)
i "AT/.\'(SE : IAM: :Role", Q Search resources
{ "Post;DataRoletf, Logical ID SN EisistD v | Type 7 | e
= n, o w 2012_10'_17;, { FillRDS Q;:J:;ZI:ZCGI(X::_[;DS AWS::Lambda::Function © CREATE_COMPLETE
; "t [—
{ InstanceSecurityGroup sg-Obc8cfaaf65e3360b [4 AWS::EC2::SecurityGroup (® CREATE_COMPLETE
"E : "Allow",
i | InternetGateway igw-01bd77061fe4fd728 [4 AWS::EC2:InternetGateway (® CREATE_COMPLETE
: "lambda.amazonaws.com" o
k., InternetGatewayAttachment IGW|vpc-04cb35935b2d4055d :INS..EC2..VPCGatewayAttachme (® CREATE_COMPLETE
"I : "sts:AssumeRole"
}s AP1-FullStack-
{ LambdaExecutionRole LambdaExecutionRole-38zmZCM AWS::IAM::Role (©® CREATE_COMPLETE
e : "Statementl”, djhzT [A

: "Allow",
e 4 NatGateway1 nat-059d2e9fe82927647 AWS::EC2::NatGateway (©® CREATE_COMPLETE

: "iam.amazonaws.com"
NatGateway1EIP 18.219.233.141 [AWS::EC2:EIP @ CREATE_COMPLETE

. " . "
2 sts:AssumeRole persistenceUser bnoel [4 AWS::IAM::User (©® CREATE_COMPLETE

] PopLambda PopulateS3Lambda [4 AWS::Lambda::Function (® CREATE_COMPLETE

: "arn:aws:iam::308130987840:policy/Boundaries”, PopulateLambdaRole PopulateLambdaRole [4 AWS::IAM::Role (©® CREATE_COMPLETE

. d [> PostDataRole PostDataRole [4 AWS::IAM::Role @ CREATE_COMPLETE

