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Introduction Design Approach

 Qur client provides cloud * Organization is based on a standard cyber attack flow
security testing as a * Chosen medium was Infrastructure as Code to maximize impact
consulting service to their through the resulting simplified setup and breakdown of the
customers environment

 We were tasked with creating * Two seperate attack paths to maximize educational content and
a learning tool for AWS minimize resource consumption
Pentesting that could also be * Model real world systems, misconfigurations, and attacks

used for skill assessment
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« Elastic Compute Cloud (EC2) Attack Path 1
* Identity and Access - Initial access to a website that allows improperly scoped access to an
Management (IAM) S3 bucket that reveals an AWS Access Key
* Lambda Function - Access Key allows enumeration of resources to identify backend
* Virtual Private Cloud (VPC) database and improperly decommissioned System’s Manager
*+ Systems Manager (SSM) command document with credentials
* AWS CLI - Credentials allow interaction with EC2 instance that can be passed a
higher privilege role for full account compromise and looting of the
database
Attack Path 2:
Intended Users - Initial access to a Django web server which is leaking credential files

through the exposed AWS metadata service

- Using the exposed credentials, resource enumeration reveals an older
|AM policy version with poorly scoped permissions which users can
revert to in order to escalate their privileges

- Additional permissions allow creation of an unsecure EC2 instance
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Testing
Use Cases All tests are performed in AWS environment provided by the client
* Unit Testing Each individual component as seen in final design
* Testing and Development iterations is tested to confirm the resources interact as intended
* Security * Integration Testing The developer of each component begins
* Education integration testing to confirm that privilege escalation or resource
» Skill Analysis communication works as intended with attached components
* Full System Testing All components in a given Attack Path are
consolidated into a full stack for testing by following through the
laC Visualization documented user walkthrough to validate all functional requirements
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