
Damn
Vulnerable
AWS API

sdmay24-11

Attack Path 1: Ashler Benda,
Karthik Kasarabada, Andrew
Bowen

Attack Path 2: Garrett Arp,
Ahmed Nasereddin, Ayo
Ogunsola, Ethan Douglass

Industry Client: Jon Schnell on
behalf of RSM US

Faculty Advisor: Julie Rursch

The Problem
● Over 90% of organizations in 2021 were using the cloud for some IT

functionality
(Source: O-Reilley)

● Threat actors are mastering exploitation of common oversights in cloud
security.
(Source: Palo-Alto)

● Personal data breaches were the 2nd most common Cyber Crime
reported in 2022
(Source: FBI Internet Crime Report)

● Overall estimated losses due to reported Cyber Crimes in the last five
years was $27.6 Billion
(Source: FBI Internet Crime Report)

● Common free to access cyber security content providers, such as HTB and
TryHackMe, have little to no cloud focused training exercises that are
available for free

Who cares? What difference will it
make?
Users
- IT Administrators
- Software Architects
- Cybersecurity Students
- Risk Consultants
- Application Developers

Use Cases
- Testing and Development
- Security
- Education

Project Requirements
● Functional Requirements

○ Incorporates common AWS-specific vulnerabilities and misconfigurations
○ Vulnerabilities should be actively exploitable
○ Attack path includes Non-Volatile persistence in the AWS account

● Resource Constraints
○ Utilize AWS CloudFormation for consolidated/static resource

configuration and distribution
○ AWS API Gateway should be used as an interface between a user and

other AWS resources
○ Utilize AWS Identity and Access Management for resource permissions
○ Cloud resource usage should be minimal, if not all in the free tier

● Qualitative Requirements
○ Identity Management roles and policies should reflect professional

roles and use cases

Final Design - Attack Path 1
Attack Path based on University network scenario

Common AWS services
● API Gateway
● Lambda Function
● EC2 Instances
● S3 Bucket
● RDS

Common mistakes
● Reusing passwords across services
● Not properly deleting old services/tools
● Hardcoding passwords
● Incorrect read/write permissions

Attack Path 1
New Student Registration Form
● Misconfigured S3 Bucket

Permissions
○ Accessible through

Lambda Function and
API Gateway

● Find AWS Access Key
● Loot other new student

data

Attack Path 1

● Student Advisor Workstation Creation
○ Access Systems Manager with AWS Access Key
○ Find SSM command in the Systems Manager with hardcoded credentials

● After Gaining Access to an EC2
○ Login to RDS Database
○ Loot Student’s personal information, financial info, etc.

Attack Path 1

● Lab Workstation Creation
○ Access AWS Console with hardcoded credentials
○ Misconfigured Role policies

■ Can attach a higher role to a EC2 Instance
○ Create an EC2 Instance and attach a role that grant complete AWS control

Final Design - Attack Path 2
Based on Red Team Methodology

5 sections follow methodology
● Initial Entry SSRF
● Privilege Escalation 1
● Looting 1
● Privilege Escalation 2
● Looting 2

Components leverage IMDS
● Widely used metadata service in AWS
● Based on misconfigured services

Certain components based on real life attacks
● Initial Entry based on Capital one attack
● Priv Esc 2 based on United hack

System Design - Attack Path 2
Initial Entry SSRF
● Utilizing an SSRF attack on an Django web server

Privilege Escalation 1
● Metadata api
● Temp credentials used to rollback policies

Looting 1
● Loot credentials from S3
● Using passrole permissions

Privilege Escalation 2
● Create new Ec2 instance, passrole more

privileged role to ec2
Looting 2
● Loot sensitive information from second S3 with

new privileged role

Implementation & Testing Process
- Proof of concept - Design
- Expanded on proof of concept - implementation
- Collaborated to connect component groups into complete Attack Path
- Tested individual stacks for bug fixes and improvements
- CloudFormation Templates after passing unit tests
- Conducted full system testing for deployment, functionality, and deletion
- Simplified non-AWS resource upload: Retrieved files from GitHub and

uploaded them through manual lambda function triggers after initial stack
deployment

AP1 Deploy to
Priv-Esc1 Demo

Deploying the Stack

CloudFox Enumeration
Validate user profile creation:

Command to get ALL information immediately available to the user about the environment

Available Resources
We find that our initial user has access to some API endpoints

We can even see what syntax the endpoints expects the body to follow

Invoking the API Gateway
POST Data into S3 Bucket to retrieve hint

GET Unauthorized data from S3 Bucket

And so forth…
- User continues the attack path until

full account compromise
- Cloudfox will continually be

used to help identify
vulnerabilities and
misconfigurations

- After full account compromise, the
stack can be deleted as a whole in
two simple steps

Conclusion
- Deliverables to client

- Two attack paths created from Cloudformation Templates
- Walkthrough guides and setup instructions

- End deliverables are focused on ease of use. Documentation are verbose
including usage and technical details.

- Our stacks are extremely lightweight allowing for quick deployment and
easy teardown.

Questions?

